Optimal Inputs for Approximate Linear Systems in Hilbert Spaces
نویسندگان
چکیده
منابع مشابه
Duals and approximate duals of g-frames in Hilbert spaces
In this paper we get some results and applications for duals and approximate duals of g-frames in Hilbert spaces. In particular, we consider the stability of duals and approximate duals under bounded operators and we study duals and approximate duals of g-frames in the direct sum of Hilbert spaces. We also obtain some results for perturbations of approximate duals.
متن کاملApproximate Controllability of Semilinear Nonautonomous Systems in Hilbert Spaces
In this paper we give a necessary and sufficient conditions for approximate controllability of a wide class of semilinear nonautonomous systems in Hilbert spaces. This is done by employing skew-product semi-flows technique. As an application we prove the approximate controllability of a broad class of nonautonomous semilinear reaction diffusion equations which includes the semilinear heat equat...
متن کاملApproximate Controllability of Semilinear Control Systems in Hilbert Spaces
This paper deals with the approximate controllability of semilinear evolution systems in Hilbert spaces. Sufficient condition for approximate controllability have been obtained under natural conditions.
متن کاملApproximate Controllability of Neutral Stochastic Integrodifferential Systems in Hilbert Spaces
In this paper sufficient conditions are established for the controllability of a class of neutral stochastic integrodifferential equations with nonlocal conditions in abstract space. The Nussbaum fixed point theorem is used to obtain the controllability results, which extends the linear system to the stochastic settings with the help of compact semigroup. An example is provided to illustrate th...
متن کاملExistence and Uniqueness of the Optimal Control in Hilbert Spaces for a Class of Linear Systems
We analyze the existence and uniqueness of the optimal control for a class of exactly controllable linear systems. We are interested in the minimization of time, energy and final manifold in transfer problems. The state variables space X and, respectively, the control variables space U, are considered to be Hilbert spaces. The linear operator T(t) which defines the solution of the linear contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1994
ISSN: 0022-247X
DOI: 10.1006/jmaa.1994.1433